Course Description

This Hands-On 3-day course is designed to provide technicians with a practical understanding of fiber optic theory and fiber applications in Local Area Network, Security and Closed Circuit TV systems. This course provides the knowledge and skills to help students design, install, terminate, test, troubleshoot and maintain cables in an intra-building and inter-building environment.

Certification(s)

ETA FOI (Fiber Optic Installer) Certification can be administered during this course, upon request.

Students Will Learn

- Discuss the history of fiber optics & evolution of fiber.
- Discuss fiber types and manufacturing methods.
- Discuss fiber optic theory and waveguide functions.
- Describe the causes of attenuation, optical reflection and refraction.
- Understand Optical Dispersion and Pulse Spreading Issues.
- List the three basic elements of fiber optic systems and discuss their uses.
- Describe various cables types and proper installation methods.
- Describe Safe Optical and Physical Work Practices.
- Understand the design of various Indoor Network Topologies.
- Discuss LAN specifications and standards.
- Recognize challenges for the Designer and Installer.
- Demonstrate safe hand tool use.
- Perform cable and fiber preparation techniques.
- Perform ST & SC style connector assemblies.
- Demonstrate connectorized Jumper and Cable Assembly skills.
- Recognize other types of connectors currently available.
- Perform optical loss testing on jumpers and cable assemblies.
- Perform Visual Fault Locator techniques.
- Demonstrate troubleshooting techniques.
- Understand OTDR basic operation and testing methods.
- And More

Target Audience
Contractors, union craftsmen, electricians, technicians, installers, splicers, LAN managers/administrators, end-users, engineers, MIS managers, facilities managers, architects and developers, systems engineers, telecom managers and anyone involved in repairing, installing, maintaining, designing, evaluating, or provisioning Cable, Fiber Optic Cables and Optical Networks.

Prerequisites

A basic understanding of various telecommunications systems. This information can be obtained in our Telecom Networks Today II course.

Course Outline

MODULE #1 FIBER OPTIC GENERAL STUDIES

I. INTRODUCTION

Common Industry Terminology
History of Fiber Optics
Advantages/Disadvantages of Fiber Optics
Basics of a Fiber Optic Communications System
Fiber Types and Manufacturing Processes (VIDEO)
Typical Transmission Rates for Voice, Video & Data Applications
System Topologies
Fiber Optic Standards

II. THEORY TOPICS

Theory of Light
Electromagnetic Spectrum
Total Internal Reflection (Singlemode)
Refraction (Multimode)
Index of Refraction (Refractive Index)
Light Sources (LEDs & LASERs)
Wave Division Multiplexing (WDM)
Optical Switching Fundamentals

III. FIBER TOPICS

Optical Fiber Types
Typical Fiber Specifications
Multimode Optical Fibers
Singlemode Optical Fibers
Dispersion Characteristics
Modal Dispersion
IV. FIBER CABLE TYPES

Outside Plant
Inside Plant
Loose tube Gel Filled (OSP)
Tight Buffered Distribution (ISP)
Tight Buffered Breakout (ISP)
Jumper Cables and Hybrids styles
Reverse Oscillation Locator (OSP)
Fiber Color Code

MODULE #2 FIBER OPTIC SAFETY ISSUES

V. SAFETY FIRST

LASER Safety and Warning labels
Types of LASERs
LASER Output Power Levels
Eye Safety Precautions
Safe Glass Disposal Practices
Food and Drinks Not Safe
Proper Person Cleanliness
Safe Work Surroundings
Confined Spaces Issues

MODULE #3 FIBER OPTIC CABLE INSTALLATION

VI. PROPER PLANNING

Project Considerations
Cable Pre-testing
Cable Reels Identification and Handling
Proper Cable Pulling Techniques
Outdoor Cable Design Characteristics
Direct Bury Cable Installation
Directional Boring Methods
Buried Cable Depths
Man Holes and Vaults
Cable Pulling Specifications
Tensile Strength and Bend Radius
Avoiding Installation Obstacles
Grounding and Bonding Fiber Cables
Identifying Cable Types
Work Area Protection Issues

MODULE #4 FIBER OPTIC TESTING
VII. BASIC TESTING INFORMATION

The dB Scale and Units of Loss
OTDR Functions for Testing
OTDR Testing for Splices, Distances and Back Reflection
OTDR Trace Guidelines
The Dead Zone
Trace Events and Interpretation
Testing at Various Wavelengths
System Loss Parameters
Calculating System Loss
Total System OTDR Testing
Optical Loss Test Sets (OLTS)
Referencing the Test Set First
Measuring Cable System Loss
Documenting Test results

Hands-On Labs:

Safety Meeting

#1 Cable Preparation Tools and Techniques

A. Show the correct and safe usage of cable preparation tools

 Cable Knife
 Kevlar shears/snips
 Tube Ring Tool
 T strippers

B. Tight Buffer Cables - Preparations for termination of jumpers and system cables

 Measure and then Ring the cable jacket accordingly
 Remove the out jacket to expose fibers and inner materials
 Cut the Kevlar, nylon tape and any strength members
 If necessary, ground the cable using recommended cable manufactures procedures.

C. Breakout & Fan Out Kits

 Determine the type of kit if necessary
 Prepare and clean the cable to match
 Install fibers to kit
 Label as necessary

D. Connector Assembly

 Determine connector type to be installed
 Slide the connector boot onto each fiber
 Remove the fiber coating with proper stripping tools
Clean the exposed fiber with alcohol pad
Apply epoxy to fiber and connector body
Insert fiber through connector & ferrule and let epoxy cure
Cleave fiber from ferrule end with hand scribe tool
Perform hand polishing techniques until fiber is flush with ferrule
Inspect polished fiber end with connector view scope
Determine polish quality for acceptance

#2 Testing Equipment and Methods

E. Optical Loss Testing

Reference the Light Source and Power Meter
Perform End to End and Link Loss Measurements
Measuring your equipments transmit power
Measuring your equipments receive power
Coupling Errors
Optic Attenuators
Documentation

F. OTDR Testing

Operating an OTDR
Setup the OTDR for Testing
OTDR Test Functions:
 a) Acceptance Testing (Reel)
 b) Span Loss and Distance Testing
 c) Connector loss testing
 d) Back Reflection Testing
 e) Using the OTDR for Troubleshooting and Restoration

G. Troubleshooting a Local Area Network

Power Meters
Visual Fault Finders
Fiber Identifiers
OTDRs

Delivery Method

Instructor led with numerous Hands-On labs and exercises.
Equipment Requirements
(This apply's to our hands-on courses only)

BTS always provides equipment to have a very successful Hands-On course. BTS also encourages all attendees to bring their own equipment to the course. This will provide attendees the opportunity to incorporate their own gear into the labs and gain valuable training using their specific equipment.

Course Length

3 Days